

Software and Release

Tim Cartwright · Tim Theisen

Mission

- Integrate, test, and distribute DHTC software
 - To connect local sites to OSG
 - To give researchers access to OSG resources
- Goal: Minimize effort needed to manage the software that underlies DHTC (esp. OSG)
- Why is this hard?
 - Some contributed software is hard to build right
 - Component integration is fragile across updates
 - Configuration balance: local control vs. usability
 - Size and complexity of stack ⇒ constant updates

Main Activities

Software Team

- Build and package software components
- Integrate components
- Maintain some software tools
- Automate testing of integrated software
- Release Team
 - Test integrated software installations
 - Release production-ready software
- Support software installations
- Maintain site admin documentation

Example: HTCondor

- OSG adds 8 patches, e.g.:
 - Patch start/stop script to get OSG security values
 - Ensure proxies are ≥1024 bits (contributed back)
- Integrated with other packages, e.g.:
 - Globus GRAM gatekeeper as batch system
 - GlideinWMS pilot jobs and central manager
- Automated tests include:
 - "Regular" HTCondor job
 - HTCondor-G job -> GRAM -> HTCondor backend
- We contributed unified source RPM to CHTC

Stakeholders

- Owners and administrators of OSG sites
 - ATLAS, CMS sites; national labs; other institutions
- Scientists, researchers, and other end users
 - Directly; indirectly via site, campus, portal, etc.
- OSG User Support and Operations
- OSG Security (software security & updates)
- OSG Network Monitoring (perfSONAR)

Stakeholder Benefits

- Build and test software so they don't have to
 - Without OSG software stack, we estimate a very competent site admin could build and configure one type of system in a few days to a week; one site usually has 3–5 different types of systems
 - Testing integration adds further time, complexity
 - Smaller sites might not exist, for lack of time
- Ultimately, lower administrative costs and greater local flexibility should result in more resources available to end users

Software/Release Teams

Name	Institution	Role	FTE
Tim Cartwright	UW–Madison	Software & Education Manager	1.0
Tim Theisen	UW-Madison	Release Manager	0.5
Brian Lin	UW-Madison	Software, Release	1.0
Carl Edquist	UW-Madison	Software	1.0
Igor Sfiligoi	UCSD	Software (Characterization)	0.2
Mátyás Selmeci	UW-Madison	Software	1.0
Edgar Fajardo	UCSD	Software	1.0
Suchandra Thapa	Chicago	Release	0.5
Xin Zhao	BNL	Release	0.4

6.6 FTE Total: 4.5 Software, 1.9 Release, 0.2 Education

Pending: 1.0 FTE Software at Nebraska

OSG Software Stack

- Builds on OS, supports user applications
- Packages
 - 161: start of Year 1
 - 233: current in OSG 3.1
 - 199: current in OSG 3.2
- Lines of code
 - 14,600,000 LOC in all source packages
 - 50,000 LOC under direct OSG control
- EPEL: use ~15 packages, rebuild ~65

Software Releases

	Q1	Q2	Q3	Q4
Year 1	5	3	3	4
Year 2	4	4/1	4/5	

- Now on a predictable monthly schedule
- Extra releases for security or critical updates
 - Jun 2013: CA certificates (5 days)
 - Dec 2013: React to OS changes (9 days)
 - Feb 2014: Critical OSG 3.2 update (3 days)
- Tickets closed: 423 last year, 365+ this year

Software Support

- Provide support for installations
 - Via Grid Operations Center (GOC) 15–20/month
 - Direct email
 - Online documentation
 https://twiki.opensciencegrid.org/bin/view/Documentation/Release3/
- How we help
 - Advise on installation and configuration
 - Debug software and integration failures
 - Improve packages, patch software, report bugs
 - Improve documentation and send email updates

Major Transitions

- OSG 3.1: Completed RPM transition

 All platforms and software; eliminated critical bugs; most sites converted
- OSG 3.2: Support for multiple release series New series is for large technology changes; can remove unused software
- Client installations anywhere by anyone Not an RPM strength, but needed by site stakeholders
- SHA-2: Support for better security algorithm

 Thoroughly tested all software; updated several components; ready early
- Java: Move from Oracle JDK 6 to OpenJDK 7

 Affected major components & supporting software; needed for security

Automated Testing

- Write and maintain automated tests in VMs
 - Install integrated software packages from OSG
 - Configure components as a site admin would
 - Test basic functionality, esp. across components
- Testing improvements
 - Added >100 new test cases; e.g., Gratia, GUMS, RSV
 - Improved test expressiveness, reliability, reports
- Switched to opportunistic VM resources
 - Old: 36 tests overnight Now: 324 in a few hours
 - Good coverage of pre-release & release scenarios

Testing Benefits

- We find defects before users
 - Java packaging changes in OS
 - Java change to RSA key bit-depth
 - OpenSSL packaging change
 - BeStMan failures
- Increased confidence in releases
- Better manual testing: Focus on test cases that are new, exploratory (e.g., new error messages), or are hard to capture in code

Recent Findings

- As the OSG software, sites, administrators, and users have matured, the pace of large changes has slowed; yet there remains fairly constant pressure to update software, fix issue, and stay on top of security concerns.
- Separation of Software and Release improves focus of both teams and yields a more stable and predictable release process.
- Software issues are often also Operations and Security issues; frequent and open interaction helps us all meet stakeholder needs.

Upcoming Challenges I

- Keep providing timely updates, fixes, support Steady and evolving backlog of ~10 support tickets, ~150 work tickets
- Support RHEL 7 and deprecate RHEL 5

 New OS brings new technologies, challenges; old OS can block progress
- Donate common packages

 Make OSG "less special" by making basic software more widely available

14 March 2014 Software & Release 15

Upcoming Challenges II

- Transition to major new technologies

 Example: Support migration to HTCondor CE, for all batch systems
- Improve documentation

 Update existing docs, add new ones, reorganize, cross-link better, etc.
- Expand testing coverage and expressiveness

 Tie together supported use cases, documentation, tests

14 March 2014 Software & Release 16

A Notable Risk

- Software team inherits abandoned software
 - Original developers are gone, unfunded, busy, ...
 - BeStMan, Gratia probes (some), GUMS, RSV, OSG Display, OSG Info Services, OSG PKI Tools
- Once inherited, very hard to find new owner
- Some inherited software is very complex;
 Software team provides only critical bug fixes, not routine updates
- Solutions?